> Linear Algebra
> [KOMS120301]-2023/2024

11.1 - Relation between vectors in a space

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha

Week 11 (November 2023)

Learning objectives

After this lecture, you should be able to:

1. explain the concept of spanning set and linear combination of vectors;
2. explain the concept of basis and dimension of vector space;
3. find a basis and the dimension of a vector space.

Subspace and Linear Combination

Linear combination

Recall that linear combination of vectors is defined as:
Let $\mathbf{w} \in V$. Then w is a linear combination of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ if \mathbf{w} can be written as:

$$
\mathbf{w}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{n} \mathbf{v}_{n}
$$

where $k_{1}, k_{2}, \ldots, k n \in \mathbb{R}$.

Example

Let $\mathbf{v}_{1}=(3,2,-1)$ and $\mathbf{v}_{2}=(2,-4,3)$. Then:

$$
\mathbf{w}=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}=2(3,2,-1)+3(2,-4,3)=(12,-8,7)
$$

is a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.

Defining linear combination of vectors

Given a vector $(5,9,5)$. How to represent the vector as a linear combination of vectors:

$$
\mathbf{u}=(2,1,4), \mathbf{v}=(1,-1,3), \text { and } \mathbf{w}=(3,2,5)
$$

Solution: Let $k_{1}, k_{2}, k_{3} \in \mathbb{R}$ be such that:

$$
k_{1}\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]+k_{2}\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]+k_{3}\left[\begin{array}{l}
3 \\
2 \\
5
\end{array}\right]=\left[\begin{array}{l}
5 \\
9 \\
5
\end{array}\right]
$$

This yields linear system:

$$
\left\{\begin{aligned}
2 k_{1}+k_{2}+3 k_{3} & =3 \\
k_{1}-k_{2}+2 k_{3} & =9 \\
4 k_{1}+3 k_{2}+5 k_{3} & =5
\end{aligned}\right.
$$

By Gauss elimination, we obtain:

$$
k_{1}=3, k_{2}=-4, k_{3}=2
$$

Linear combination forms subspace

Theorem
If $S=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{r}\right\}$ is a set of vectors in a vector space V.
Then:

1. The set W containing all linear combinations of vectors in S is a subspace of V.
2. W is the smallest subspace of V that contains vectors in S, i.e., all the other subspaces containing the vectors also contain W.

Exercise: prove the correctness of the theorem.

Spanning Set

Set of vectors forming subspace

- Let V be a vector space, $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in V$.
- Let W be a subspace of V s.t. $\forall \mathbf{w} \in W$,

$$
\mathbf{w}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{n} \mathbf{v}_{n}
$$

where $k_{1}, k_{2}, \ldots, k_{n}$ are scalars.

Hence, $=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is said to span W.
S is called spanning set, and is denoted as:

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\} \text { or } \operatorname{span}(S)
$$

Example: space spanned by one of two vectors

Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ are noncollinear vectors in \mathbb{R}^{3}, with their initial points at the origin, then:

- $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ consisting all linear combinations $k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}$, is the plane determined by vectors \mathbf{v}_{1} and \mathbf{v}_{2}.
- if $\mathbf{v} \neq \mathbf{0}$ is a vector in \mathbb{R}^{2} or \mathbb{R}^{3}, then $\operatorname{span}\{\mathbf{v}\}$ consisting all scalar multiples $k \mathbf{v}$, is the line determined by \mathbf{v}.

(a) $\operatorname{Span}\{\mathbf{v}\}$ is the line through the origin determined by \mathbf{v}.

(b) Span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is the plane through the origin determined by \mathbf{v}_{1} and \mathbf{v}_{2}.

Exercise 1

The following standard unit vectors span \mathbb{R}^{3}.

$$
\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)
$$

Exercise 1

The following standard unit vectors span \mathbb{R}^{3}.

$$
\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)
$$

This is because, every vector $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ can be represented as linear combination:

$$
\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}
$$

In this case, $\mathbb{R}^{3}=\operatorname{span}\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$.

Exercise 2

Polynomials $1, x, x^{2}, \ldots, x^{n}$ span the vector space P_{n}

Exercise 2

Polynomials $1, x, x^{2}, \ldots, x^{n}$ span the vector space P_{n}
This is because, every polynomial $\mathbf{p} \in P_{n}$ can be written as:

$$
\mathbf{p}=a_{0}+a_{1} x+a_{2} x_{2}+\cdots+a_{n} x^{n}
$$

which is a linear combination of $1, x, x^{2}, \ldots, x^{n}$.
In this case, $P_{n}=\operatorname{span}\left\{1, x, x^{2}, \ldots, x^{n}\right\}$.

Exercise 3

Determine whether following vectors span \mathbb{R}^{3} !

$$
\mathbf{v}_{1}=(2,-1,3), \mathbf{v}_{2}=(4,1,2), \mathbf{v}_{3}=(8,-1,8)
$$

Exercise 3

Determine whether following vectors span \mathbb{R}^{3} !

$$
\mathbf{v}_{1}=(2,-1,3), \mathbf{v}_{2}=(4,1,2), \mathbf{v}_{3}=(8,-1,8)
$$

Let $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ be a vector in \mathbb{R}^{3}, and $k_{1}, k_{2}, k_{3} \in \mathbb{R}$.
If the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ span \mathbb{R}^{3}, then it should be:

$$
\left(u_{1}, u_{2}, u_{3}\right)=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+k_{3} \mathbf{v}_{3}
$$

We will check if the following linear system has a solution.

$$
\begin{cases}2 k_{1}+4 k_{2}+8 k_{3} & =u_{1} \\ -k_{1}+k_{2}-k_{3} & =u_{2} \\ 3 k_{1}+2 k_{2}+8 k_{3} & =u_{3}\end{cases}
$$

Exercise 4 (cont.)

The linear system has coefficient matrix:

$$
A=\left[\begin{array}{ccc}
2 & 4 & 8 \\
-1 & 1 & -1 \\
3 & 2 & 8
\end{array}\right]
$$

Note that:
$\operatorname{det}(A)=2\left|\begin{array}{cc}1 & -1 \\ 2 & 8\end{array}\right|-4\left|\begin{array}{cc}-1 & -1 \\ 3 & 8\end{array}\right|+8\left|\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right|=20+20-40=0$
Hence, there is no solution for the linear system, meaning that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ does not span \mathbb{R}^{3}.

Linear Independence

Linear independence in \mathbb{R}^{2} and \mathbb{R}^{3}

Let V be a vector space. The set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is said linearly independent iff the linear equation

$$
\begin{equation*}
k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{n} \mathbf{v}_{n}=0 \tag{1}
\end{equation*}
$$

has exactly one solution, which is the trivial solution:

$$
k_{1}=0, k_{2}=0, \ldots, k_{n}=0
$$

Conversely, the set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is said not linearly independent or linearly dependent, iff the linear combination (1) has a non-trivial solution (i.e., a solution other than $k_{1}=0, k_{2}=0, \ldots, k_{n}=0$).

Example of linearly independent set

The vectors $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0)$, and $\mathbf{k}=(0,0,1)$ are linearly independent vectors in \mathbb{R}^{3}.

Why?

Note that for scalars $k_{1}, k_{2}, k_{3} \in \mathbb{R}$, we have: $k_{1} \mathbf{i}+k_{2} \mathbf{j}+k_{3} \mathbf{k}=\mathbf{0}$, that is equivalent to
$k_{1}(1,0,0)+k_{2}(0,1,0)+k_{3}(0,0,1)=(0,0,0) \Leftrightarrow\left(k_{1}, k_{2}, k_{3}\right)=(0,0,0)$
Clearly, there is no solution other than $k_{1}=0, k_{2}=0$, and $k_{3}=0$.
This means that $S=\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ is linearly independent.
Similarly, we can show that:

$$
\mathbf{e}_{1}=(1,0,0, \ldots, 0), \mathbf{e}_{2}=(0,1,0, \ldots, 0), \text { and } \mathbf{e}_{n}=(0,0,0, \ldots, 1)
$$

are linearly independent vectors.

Example of linearly dependent sets (1)

Determine whether the vectors:

$$
\mathbf{v}_{1}=(2,-1,0,3), \mathbf{v}_{2}=(1,2,5,-1), \quad \text { and } \quad \mathbf{v}_{3}=(7,-1,5,8)
$$

are linearly independent or not!

Example of linearly dependent sets (1)

Determine whether the vectors:

$$
\mathbf{v}_{1}=(2,-1,0,3), \mathbf{v}_{2}=(1,2,5,-1), \quad \text { and } \quad \mathbf{v}_{3}=(7,-1,5,8)
$$

are linearly independent or not!

Solution:

Note that: $3 \mathbf{v}_{1}+v_{2}-v_{3}=\mathbf{0}$ (show it!).
This means that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is not linearly independent.

Example of linearly dependent sets (2)

Determine if the polynomials:

$$
\mathbf{p}_{1}=1-x, \quad \mathbf{p}_{2}=5+3 x-2 x^{2}, \quad \text { and } \quad \mathbf{p}_{3}=1+3 x-x^{2}
$$

are linearly independent or not!

Example of linearly dependent sets (2)

Determine if the polynomials:

$$
\mathbf{p}_{1}=1-x, \quad \mathbf{p}_{2}=5+3 x-2 x^{2}, \quad \text { and } \quad \mathbf{p}_{3}=1+3 x-x^{2}
$$

are linearly independent or not!

Solution:

Note that $3 \mathbf{p}_{1}-\mathbf{p}_{2}+2 \mathbf{p}_{3}=\mathbf{0}$ (show it!).
Hence, the vectors are linearly dependent.

Exercises

Do the relevant exercises in the Howard Anton's nook.

Geometric interpretation of linear independence in \mathbb{R}^{2} and \mathbb{R}^{3}

(a) Linearly dependent

(a) Linearly dependent

(b) Linearly dependent

(b) Linearly dependent

(c) Linearly independent

(c) Linearly independent

Determining linear independence/dependence (1)

Determine the linear dependence of the vectors:

$$
\mathbf{v}_{1}=(1,-2,3), \mathbf{v}_{2}=(5,6,-1), \quad \text { and } \quad \mathbf{v}_{3}=(3,2,1)
$$

Solution:

We check if the vector equation $k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+k_{3} \mathbf{v}_{3}=\mathbf{0}$ has a solution in \mathbb{R}. The equation is equivalent to:

$$
\begin{aligned}
k_{1}(1,-2,3)+k_{2}(5,6,-1)+k_{3}(3,2,1) & =(0,0,0) \\
\left(k_{1}+5 k_{2}+3 k_{3},-2 k_{1}+6 k_{2}+2 k_{3}, 3 k_{1}-k_{2}+k_{3}\right) & =(0,0,0)
\end{aligned}
$$

Solve the system:

$$
\left\{\begin{aligned}
k_{1}+5 k_{2}+3 k_{3} & =0 \\
2 k_{1}+6 k_{2}+2 k_{3} & =0 \\
3 k_{1}-k_{2}+k_{3} & =0
\end{aligned}\right.
$$

Solving the system using Gaussian elimination, we get:

$$
k_{1}=-\frac{1}{2} t, k_{2}=-\frac{1}{2} t, k_{3}=t, \quad t \in \mathbb{R}
$$

Hence, the system has a non-trivial solution, so the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent.

Determining linear independence/dependence (2)

Show that the polynomials form a linearly independent set of vectors in P_{n}.

$$
1, x, x^{2}, \ldots, x^{n}
$$

Determining linear independence/dependence (2)

Show that the polynomials form a linearly independent set of vectors in P_{n}.

$$
1, x, x^{2}, \ldots, x^{n}
$$

Solution:

Let $a_{0}, a_{1}, \ldots, a_{n}$ be such that:

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=\mathbf{0}
$$

We must show that the only solution of the polynomial for $x \in(-\infty, \infty)$ is:

$$
a_{0}=a_{1}=a_{2}=\cdots=a_{n}=0
$$

From Algebra, we know that:
Theorem
Every nonzero polynomial of degree n has at most n roots.
This implies that $a_{0}=a_{1}=\cdots=a_{n}$ (or, the polynomial is zero polynomial).
Otherwise, it is a nonzero polynomial, having infinite number of roots (that is, $x \in(-\infty, \infty))$, contradicting the theorem.

Exercises

Do the relevant exercises in Howard Antons' book.

